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Spatial partitioning of biological functions is a phenomenon 
fundamental to life. In humans, this spatial partitioning 
constitutes a hierarchy of specialized systems ranging across 
scales, from organs to specialized cells, to subcellular struc-
tures, down to macro-molecular complexes. At the cellular 
level, proteins function at specific times and locations. 
These subcellular locations such as organelles provide a 
specific chemical environment and set of interaction part-
ners that are necessary to fulfill the protein’s function. Mis-
localization of proteins can be associated with cellular dys-
function and disease (1, 2). Thus, knowledge of the spatial 
distribution of proteins at a subcellular level is essential for 
understanding protein function, interactions, and cellular 
mechanisms. 

Several approaches for systematic analysis of protein lo-
calizations have been described. Quantitative mass-
spectrometric readouts allow identification of proteins with 
similar distribution profiles across fractionation gradients 
(3–7) or enzyme-mediated proximity labeled proteins in cells 
(8–11). In contrast, imaging-based approaches using tagged 
proteins (12–14) or affinity reagents (15, 16) enable exploring 
the subcellular distribution of proteins in situ in single cells 
and can also effectively identify cell-to-cell variability and 

multi-organelle distribution. Complimentary to these exper-
imental methods, a number of in silico approaches have 
been used to predict the subcellular localization in eukaryot-
ic cells (e.g., (17, 18)). The manually curated UniProt data-
base (19) is an important resource for protein localization, 
as it collects subcellular data from literature and external 
databases for a large number of species. Despite these ef-
forts, experimental data for subcellular localization are lack-
ing for the majority of human proteins. To address this 
need, pilot studies have been initiated to probe human pro-
teins using immunofluorescence (IF) and high-resolution 
confocal microscopy (15, 20, 21) and mass spectrometry (7). 
To date, maps of the subcellular proteome of murine stem 
cells (6), HeLa cells (7) and rat liver (22) represent the best-
characterized data sets for mammals. 

Here, we report the establishment of a Cell Atlas within 
the framework of the Human Protein Atlas (23, 24) to create 
a comprehensive, proteome-wide knowledge resource for 
subcellular localization in human cells. By integration of 
transcriptomics data and an antibody-based image profiling 
approach, we provide experimental localization data for 
12,003 proteins using a panel of 22 human cell lines and 
13,993 antibodies. The spatial distribution of these proteins 
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Resolving the spatial distribution of the human proteome at a subcellular level greatly increases our 
understanding of human biology and disease. Here, we present a comprehensive image-based map of the 
subcellular protein distribution, the Cell Atlas, built by integrating transcriptomics and antibody-based 
immunofluorescence microscopy with validation by mass spectrometry. Mapping the in situ localization of 
12,003 human proteins at a single-cell level to 30 subcellular structures enabled the definition of 13 major 
organelle proteomes. Exploration of the proteomes reveals single-cell variations of abundance or spatial 
distribution, and localization of approximately half of the proteins to multiple compartments. This 
subcellular map can be used to refine existing protein-protein interaction networks and provides an 
important resource to deconvolute the highly complex architecture of the human cell. 
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is resolved to 30 cellular structures and substructures, alto-
gether representing 13 major organelles. Particular empha-
ses were on defining the organelle proteomes, describing 
multilocalizing proteins and proteins displaying single-cell 
variability. We expect the availability of localization infor-
mation for the human proteome to complement other sys-
tematic efforts on the DNA (25, 26), RNA (27, 28), and 
proteome (19, 29) levels and aid in the molecular under-
standing of the human cell and its interactions. 
 
Results 
Cell lines and transcriptomics analysis 
The Cell Atlas aims to define the proteome of organelles and 
subcellular compartments by IF imaging (Fig. 1). In order to 
select suitable cell lines for the effort, transcriptomics anal-
ysis using RNA-sequencing (RNA-seq) was performed on 56 
human cell lines from various origins representing different 
germ layers and tissues (table S1). A hierarchical clustering 
analysis based on RNA-seq data (Fig. 2A) shows that cell 
lines of similar origin or phenotype cluster together, indicat-
ing a common pattern of gene expression. Prominent clus-
ters include myeloid and lymphoid cell lines respectively, 
endothelial cells, and cells immortalized by introduction of 
telomerase. 22 cell lines were selected for IF imaging; to-
gether expressing 84% (16,504) of all protein-coding genes 
(19,628) predicted by Ensembl (version 83.38 (26)) based on 
a transcripts per million (TPM) cut-off ≥ 1 (table S2). Inter-
estingly, by applying TPM values the average number of 
expressed genes in the sequenced cell lines is 11,490 genes 
(table S2) and ranges from 10,136 genes in Daudi cells (B 
lymphoblast) to 12,816 in SCLC-21H (small cell lung carci-
noma). This is notably less than the previously measured 
average of approximately 14,000 transcripts when using 
FPKM values (Fragments Per Kilobase of transcript per Mil-
lion mapped reads) as normalization method. However, the 
TPM-based number corresponds more accurately to the 
number of proteins actually detected in the present and 
other proteomic studies (30, 31). 

A classification of the RNA expression levels according to 
the principle previously described (24) was performed to 
define genes expressed in all cell lines and those expressed 
in a cell line restricted manner (fig. S1). About one third 
(6,295) of the protein-coding genes were expressed in all cell 
lines suggesting a “house-keeping” role, while 45% showed a 
more variable expression. 11% (2,090) of all protein-coding 
genes were not detected in any of the analyzed cell lines. Of 
these genes, 1,225 were detected in tissues suggesting that 
they code for proteins restricted to a smaller number of spe-
cialized cell types or representing specific developmental 
stages (table S3). Functional annotations from Gene Ontolo-
gy (GO) support this hypothesis showing enrichment for 
tissue-restricted proteins, such as receptors in the sensory 

cells or reproduction-related proteins (table S4). 
 
Creation of a subcellular map 
As an integrated part of the Human Protein Atlas effort 
(23), antibodies have been generated, affinity-purified using 
the antigen, and validated by protein microarray analysis to 
ensure specific and selective binding to the intended target 
antigen (32). These antibodies cover the majority of all pre-
dicted human protein-coding genes. A systematic workflow 
for subcellular localization of proteins was established using 
IF and high-resolution confocal microscopy as described in 
fig. S2 (15, 16). Altogether 13,993 antibodies (13,073 antibod-
ies generated within the HPA project complemented with 
920 commercially available antibodies) were selected to be 
included in the Cell Atlas after reliability analysis. Every 
antibody was used for immunostaining of the bone osteo-
sarcoma-derived U-2 OS cell line and in two additional cell 
lines from the panel showing a high expression of the gene. 
In addition to the antibody of interest, reference markers 
outlining the nucleus, microtubules and endoplasmic reticu-
lum were included in each sample (fig. S3). For all proteins, 
the spatial expression pattern observed in the confocal im-
ages were assigned to one or more of 30 cellular organelles 
and substructures (Fig. 1 and table S5), and classified by a 
location specific reliability score as outlined below. The im-
ages and the primary data are presented in the Cell Atlas in 
a gene-centric manner, including the classification of all 
images and a description of the validation and reliability of 
the antibodies and identified locations. Furthermore, the 
images were annotated by a Citizen Science approach 
through “Project Discovery” within EVE online, a massive 
multiplayer online game, resulting in more than 7 million 
minutes of active participation from over 180,000 players 
across the world to date. Altogether, the Cell Atlas (version 
16.1 of the Human Protein Atlas) contains 82,152 high-
resolution annotated images covering 61% of all the human 
protein-coding genes and 73% of the genes expressed in the 
IF cell line panel. The complete localization dataset contain-
ing the results for all proteins in the Cell Atlas as well as all 
successful stainings obtained in the different cell lines are 
found in tables S6 and S7, respectively. 
 
Validation of data in the Cell Atlas 
Recently, there have been many articles questioning the 
quality and use of antibodies in research (e.g., (33, 34)). 
Since antibody off-target binding can cause false positive 
results, efforts have gone into manually annotating all anti-
bodies regarding their reliability and quality of the staining. 
In the Cell Atlas we provide a reliability score for every an-
notated location and protein at a four-tiered scale: “validat-
ed”, “supported”, “approved” and “uncertain”. Locations 
obtained the score “validated” if the antibody was validated 
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according to one of the validation “pillars” proposed by an 
international working group (35) suitable for IF: (i) genetic 
methods using siRNA silencing (36) or CRISPR/Cas9 knock-
out, (ii) expression of a fluorescent protein-tagged protein at 
endogenous levels (37) or (iii) independent antibodies tar-
geting different epitopes (see fig. S4 for examples). The sec-
ond tier, “supported” locations, is defined by agreement 
with external experimental data from the UniProt database. 
An “approved” location score indicates lack of external ex-
perimental information about the protein location. Lastly, 
an “uncertain” location shows contradictory results com-
pared to complementary information, such as literature or 
transcriptomics data. In this case, these locations are shown 
since it still cannot be ruled out that the data are correct. In 
fig. S5, the distributions of scores for all proteins are shown. 
43% of the protein locations provided are in the top two 
tiers representing a high certainty in the results and half of 
the proteins are in the “approved” category. Although these 
proteins have no external evidence to support their location, 
these antibodies passed our quality tests and show a con-
sistent IF staining. Nevertheless, the likelihood for false re-
sults may be higher and should be taken into consideration 
when looking at individual proteins, while the effect on 
global proteomic analyses is negligible (fig. S6). 
 
The human organelle proteomes 
The spatial information provided by the IF images enabled 
the development of a subcellular map. The distribution of 
12,003 proteins to 30 cellular compartments and substruc-
tures is shown in Fig. 2B and detailed in table S8. Taken 
together, we were able to describe the proteome for 13 ma-
jor organelles. In addition, we defined a secretome contain-
ing proteins secreted through the classical pathway by 
combining three bioinformatic methods for signal peptide 
recognition together with seven prediction methods for 
transmembrane regions (24), suggesting that 2,918 proteins 
are secreted (table S9). Most proteins of the Cell Atlas are 
found in the nucleoplasm and its substructures (6,245). The 
number of nuclear proteins exceeds previously identified 
numbers considerably. Although false nuclear localizations 
can be observed due to cross-reactivity of antibodies (21), 
the fraction of nuclear locations remain similar in the high-
er and lower reliability tiers. The second largest number of 
proteins was identified in the cytosol (4,279) followed by 
vesicles (1,806), which include transport vesicles as well as 
small membrane-bound organelles like endosomes or perox-
isomes. The nucleoli, including their fibrillar center, con-
tained 1,270 different proteins, which is a more diverse 
proteome than the mitochondrial or Golgi proteome, alt-
hough nucleoli are more restricted in their known function. 
In total, we provide subcellular experimental evidence for 
5662 (47%) proteins lacking an experimentally determined 

GO-term for a cellular compartment. Furthermore, we re-
fined or confirmed subcellular locations for 6341 (53%) pro-
teins already classified by experimentally determined GO-
terms (fig. S7). 

We further investigated the enrichment of RNA classifi-
cation categories for the defined organelle proteomes. Fig-
ure 2C shows that proteins located to mitochondria, 
nucleus, nucleoli, and endoplasmic reticulum (ER) are more 
often expressed in all cell lines, which emphasizes their 
house-keeping role and important function for cellular sur-
vival. On the contrary, proteins with RNA expression pat-
tern categories as “enriched” (expressed 5 times greater than 
all other cells) and “enhanced” (5 times greater than the 
mean) are more commonly secretedor located to the plasma 
membrane, vesicles and the cytoskeleton, which indicate 
that these compartments play important roles for inter-
cellular communication and adaptation to the surrounding 
microenvironment. An analogous pattern was seen in the 
RNA class distribution across 59 human tissues (fig. S8) in-
dicating general similarities in organelle organization be-
tween cell lines and tissues. 

The goal of proteomic studies lies in the large-scale local-
ization of novel proteins to achieve a complete picture of 
organelle function. IF-images are in particular advantageous 
in the identification of protein constituents of compart-
ments that are challenging to purify or have distinct sub-
structures. For example, specialized domains within a 
compartment such as cell junctions in the plasma mem-
brane are easily visible in IF, like the uncharacterized pro-
tein C4orf19 (Fig. 2D). Other compartments such as the 
cytokinetic bridge correspond to a rare cellular event and 
are thus challenging for proteomic studies. However, with 
our high-resolution images we could not only identify 88 
proteins located to the cytokinetic bridge (Fig. 2E), but also 
analyze the underlying components midbody (36 proteins, 
Fig. 2F) and midbody ring (12 proteins, Fig. 2G). The detec-
tion of well-known constituents like CHMP1B to the mid-
body as well as less characterized proteins like APC2 to the 
midbody ring or CCSAP to the cytokinetic bridge, results in 
an enhanced understanding of the final step of cell division. 
In nucleoli, we identified proteins such as MKI67 that are 
localized in the rim around the nucleolus and re-organize to 
line the condensed chromosomes during mitosis (Fig. 2H). 
As described below, additional tailored assays to comple-
ment the Cell Atlas further increase the available infor-
mation about subcellular locations. The largely 
uncharacterized dynamic structure rods and rings (R&R) 
had previously only three known members including 
IMPDH1 and IMPDH2 (Fig. 2I) (38). 21 R&R candidates 
were discovered and confirmed by actively inducing R&R 
formation with the compound ribavirin (38). The assign-
ment of additional proteins to the R&R sheds new light on 
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this structure and provides opportunities for better under-
standing of its origin, composition and function. In the nu-
cleus, the PML body (marked by SP100, Fig. 2J) was the a 
prominent substructure. This location can be further ex-
plored for selected proteins, as the Cell Atlas contains addi-
tional images generated by super-resolution microscopy, 
allowing a distinction of proteins localizing to the surface 
(SP100, Fig. 2K,lower image) or to the core (ZBTB8A, Fig. 
2K, upper image) of the PML body. 
 
Validation with other proteome-wide data sets 
In order to evaluate the overall validity of our data, we con-
trolled its agreement with functional protein information 
from independent proteome-wide databases. First, we per-
formed a GO “Biological Process” term analysis of the prote-
ome of each organelle. The significantly enriched terms 
were all related to known key processes of the respective 
organelle (table S10). Secondly, we performed location en-
richment of a set of proteins by a hypergeometric statistical 
test. In this manner we could demonstrate that the nuclear 
receptors according to nucleaRDB (39) and their co-
regulators as defined by NURSA (40) were enriched in the 
nucleus (Fig. 3A and fig. S9) and the group of predicted se-
creted proteins were enriched in the organelles of the secre-
tory pathway (Golgi apparatus, vesicles, ER) (Fig. 3A). 
Thirdly, enrichment tests with the mammalian complex da-
tabase CORUM (41) showed similar results (Fig. 3A and fig. 
S9). Known complexes were significantly enriched in the 
respective organelle, with exception of the cytoskeleton. 
 
Validation by mass spectrometry 
Proteome databases contain information about the subcellu-
lar localizations of already characterized proteins; however, 
our dataset contains a large portion of proteins with a pre-
viously uncharacterized location. Therefore, we used an in-
dependent approach to reliably validate our annotations. 
The Cell Atlas data were compared against a high-resolution 
spatial protein map generated by a mass spectrometry-
based method, called hyperplexed localization of organelle 
proteins by isotope tagging (hyperLOPIT). HyperLOPIT 
aims to resolve all subcellular compartments in a single ex-
periment by combining biochemical cell fractionation with 
quantitative mass spectrometry and robust multivariate sta-
tistical analysis (3, 6). This enables global identification, 
quantification and assignment of proteins to their respec-
tive subcellular compartments (42). The technique does not 
rely on absolute organelle purification but is based on the 
measurement of the distribution of cellular proteins across 
multiple density gradient fractions. Protein localization is 
assigned by comparing the distribution of proteins of un-
known subcellular location with those of unambiguous or-
ganelle markers. 

The hyperLOPIT pipeline was applied to create a subcel-
lular map of the U-2 OS cell line. Spatial distribution pro-
files of 5,020 proteins were determined and a Support 
Vector Machine (SVM) was used to classify 1,971 proteins to 
12 discrete subcellular compartments, which were custom-
ized to match with the annotations in the Cell Atlas (Fig. 
3B). Localization information for a total of 3,626 proteins 
was available in both the Cell Atlas (U-2 OS only, table S11) 
and hyperLOPIT (table S12). Out of these, 1,426 proteins 
were unambiguously classified to a unique location by hy-
perLOPIT. Within this group, 799 of these proteins were 
also assigned a unique location in the Cell Atlas, whereas 
the remaining 627 proteins had Cell Atlas annotations for 
more than one location. 

Two comparisons between the datasets were performed; 
first, a comparison of proteins shown to be present in only 
one location in the Cell Atlas data (“unique match”, table 
S13), and secondly, a comparison with all available proteins 
including those shown to reside in more than one subcellu-
lar class in the Cell Atlas, with one unambiguous assign-
ment in the hyperLOPIT dataset (“partial match”, table S13). 
Of the 799 proteins assigned by the Cell Atlas to a single 
location we found a 76% agreement (unique match) with 
hyperLOPIT subcellular assignments. For the 1,426 proteins 
common between the two datasets, an 82% agreement (par-
tial match) was observed between subcellular assignments. 
However, the overall agreement differs between the four 
reliability classes given in the Cell Atlas and is only 46% for 
the “approved” score, which represents 51% of the Cell Atlas 
dataset (table S13). At the organelle level (table S13), the 
agreement ranged from 91% and 92% for the ER and mito-
chondria, respectively, to 60% for vesicles. This lower over-
lap is expected, since vesicles annotated by the Cell Atlas 
groups together several organelles and structures that could 
be analyzed separately using hyperLOPIT. It is clear from 
Fig. 3C that many Cell Atlas “vesicular” proteins reside in 
the unclassified intermediate area of the hyperLOPIT da-
taset when viewed by principal component analysis (PCA). 
Vesicles are highly dynamic structures which are generated 
in, and traffic between, different parts of the cell and hence 
the steady state location of their protein constituents is like-
ly to involve multiple locations, which in the hyperLOPIT 
data would result in no single, unique classification. The 
hyperLOPIT workflow involves fractionation of chromatin-
associated proteins and nucleoplasm/nucleolus, and this 
additional fractionation manifests itself as discrete protein 
correlation patterns. Interrogation of the hyperLOPIT data 
with Cell Atlas nuclear assignments reveals a nucleolar-like 
sub cluster in the hyperLOPIT data demonstrating the pow-
er of combining data created using orthogonal methods 
(Fig. 3D). 

In the hyperLOPIT dataset, 60% of the proteins identi-

First release: 11 May 2017  www.sciencemag.org  (Page numbers not final at time of first release) 4 
 

 o
n 

M
ay

 1
1,

 2
01

7
ht

tp
://

sc
ie

nc
e.

sc
ie

nc
em

ag
.o

rg
/

D
ow

nl
oa

de
d 

fr
om

 

http://www.sciencemag.org/
http://science.sciencemag.org/


fied fell into the “unclassified” category. This unclassified 
category may represent several dynamic scenarios, such as 
proteins localized to unannotated subcellular structures or 
multilocalizing proteins. A separate analysis was conducted 
for the 1,755 proteins, labeled by hyperLOPIT as “unclassi-
fied” but which contained subcellular information in the 
Cell Atlas (fig. S10). Interestingly, the majority of the hyper-
LOPIT-unclassified proteins are found in the HPA classes 
’nucleoplasm’, ‘vesicles’, ‘nucleoplasm and cytosol’ and 
‘plasma membrane and cytosol’, reflecting the highly dy-
namic localization of the majority of cellular proteins. 

To show the complementary nature of the Cell Atlas and 
hyperLOPIT at predicting sub-cellular location, we applied a 
transfer learning method (43) to integrate the two data 
sources. Transfer learning allows one to meaningfully inte-
grate heterogeneous data. By combining labeled marker 
proteins common in both datasets a significant increase in 
classifier accuracy was obtained (fig. S11) compared to using 
the cell atlas alone (p-value < 2e-16). This highlights the 
strength of integrating the two approaches for the optimal 
classification of proteins to organelles. 
 
Proteins localized to multiple compartments 
In a pilot to this study (15), we concluded that many of the 
studied proteins were not restricted to a single organelle, 
but localized to one or more additional locations. This ob-
servation is supported by the hyperLOPIT data described 
above and by data for yeast, where 54.3% of the proteins 
were assigned to multiple localizations (14). One of the 
strengths of imaging-based spatial protein analysis is the 
ability to localize a protein in situ and simultaneously visu-
alize protein distribution to multiple cellular structures, 
thus identifying multilocalizing proteins (MLPs). Here, we 
have classified the main and additional locations for each 
protein based either on a clear difference in the signal 
strength or in the occurrence across the tested cell lines. 
Over 50% (6,163) of the proteins were detected at more than 
one location, of which 27% (1,649) at three or more locations 
(table S8). ER and mitochondria mainly contain proteins 
that are specifically located, while the proteome of the 
plasma membrane and the nuclear substructures contained 
mainly MLPs, consistent with the hyperLOPIT data (Fig. 3E 
and fig. S12). This aspect further agrees with the known bio-
logical function of the organelles. While the mitochondria is 
more self-contained regarding its proteome, the nucleus, 
plasma membrane and cytosol contain many proteins that 
operate across organelles in order to regulate metabolic re-
actions, gene expression, or transmit information from the 
surrounding environment. The proteome also includes 
MLPs that vary in their cell-to-cell spatial distribution as 
well as MLPs that show a cell line-dependent location with 
different localization in the three cell lines tested, such as 

ZNF554 (Fig. 4, A to D). In total 3,546 MLPs showed a cell-
line dependent localization (table S14). 

To investigate if MLPs are organized in superordinate 
structures, we grouped the individual organelles and sub-
structures into three meta-compartments and searched for 
distinct patterns within and across these meta-
compartments by aligning the proteins on a circular plot 
(Fig. 4, E to G): Nucleus (nuclear and nucleolar structures), 
Cytoplasm (cytosol, mitochondria, and the different types of 
cytoskeleton), and the Secretory Pathway (ER, Golgi appa-
ratus, vesicles, plasma membrane). Within the cytoplasm 
meta-compartment most MLPs appeared between the cyto-
sol and the cytoskeletal structures and other organelles it 
embeds (Fig. 4F). Similarly, most MLPs in the nucleus could 
be identified as a combination of nucleoplasm and the fine 
structures within, such as nucleoli or nuclear bodies, and 
likely reflect dynamic translocations of proteins between 
these proximal compartments (Fig. 4F). The MLPs in the 
secretory pathway exhibit a sequential pattern likely reflect-
ing the directional protein trafficking (Fig. 4F). This analysis 
was repeated stratified according to the reliability of loca-
tions to control if our results were affected by the data qual-
ity (fig. S6). The resulting patterns of multilocalization were 
highly similar regardless of the dataset used. 

Frequent patterns of multilocalization across meta-
compartments include “cytosol and nucleus”, “cytosol and 
nucleoli” and “mitochondria and nucleoli” (Fig. 4G). En-
richment analysis of GO “Biological Process” terms of these 
proteins (table S15) revealed that MLPs of the nucleus and 
the cytosol are related to transcription and cell cycle regula-
tion, such as UBE2L3 (Fig. 4H); MLPs of the cytosol and 
nucleoli are enriched for ribosomal proteins such as 60S 
ribosomal protein L19, which can be also found on the ER 
(Fig. 4I); and proteins found in both mitochondria and nu-
cleus are related to protein translation and cellular respira-
tion, such as MTIF3 (Fig. 4J) or NDUFA9, respectively. 
Intriguingly, the meta-compartments secretory pathway and 
nucleus shared a strikingly high number of MLPs, despite 
not being in direct physical contact with each other. These 
MLPs are characterized by their involvement in the regula-
tion of transcription or cell cycle-dependent processes, for 
example CCAR1 (Fig. 4K). This indicated that the proteomes 
of the ER, Golgi apparatus, and vesicles are more functional 
versatile and should not be reduced to their role in protein 
secretion. In fact, the MLPs create a range of interactions 
between functionally distant organelles and include them in 
a network of regulatory processes, which are primarily asso-
ciated with the nucleus. This may be an indication of the 
complex network of events surrounding how the cell con-
veys signals from the exterior to the nucleus. 
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Spatial information refines biological networks 
The biological function of an organelle is not only defined 
by the presence or absence of proteins, but by its underlying 
chain of reactions, which in turn are often conducted by 
protein-protein interactions. We used the spatial infor-
mation of the Cell Atlas to examine the relationship be-
tween protein interaction partners. For every annotated 
structure in the Cell Atlas we investigated the subcellular 
locations for the direct protein interaction partners accord-
ing to the Reactome database (44). Figure 5A shows a heat 
map for the probability that proteins in one compartment 
interact directly with proteins in all cellular compartments. 
In this stringent situation, the majority of the significant 
enrichments (p<0.05) for an interaction pair are found with-
in the same organelle. This compartmental enrichment was 
even seen for small structures such as nuclear bodies and 
nucleoli fibrillar centers. The exception was the microtu-
bule-organizing center (MTOC), which showed significant 
enrichment for interactors found in the centrosome and 
microtubules. For some structures, proximal structures were 
also found significantly enriched. Proteins in the plasma 
membrane for example showed increased probability of di-
rectly interacting with proteins in the plasma membrane, 
cell junctions, the Golgi apparatus, vesicles, focal adhesions, 
and cytosol. These results support the quality of the loca-
tions annotated in the Cell Atlas as direct protein-protein 
interactions appear in the same or connected compart-
ments. To explore how cellular signaling expands across 
cellular compartments through reaction pathways the same 
analysis was performed for the organelle proteomes looking 
at protein interactions within reaction pathways as defined 
by Reactome (Fig. 5B). In this analysis, the meta-
compartments became more prominent, especially interac-
tions between the organelles of the secretory pathway, and 
signaling across compartments. Unexpected cross talk 
across compartments includes apparent interactions be-
tween the cytokinetic bridge and nuclear bodies. 

We examined whether existing protein-protein interac-
tion networks would benefit from a more comprehensive 
annotation of a protein’s subcellular location, as it con-
strains the possible number of interaction partners. The 
localization data was integrated as spatial boundaries to the 
human interactome that was recently used to systemically 
uncover the molecular background of human diseases (45). 
The interactome described annotations for 79,020 interac-
tions of 7,827 proteins. By taking the subcellular main loca-
tion into account, the number decreased to 51,885 (65.7%) 
interactions of 6,985 proteins that were found likely in vivo 
(fig. S13). However, a substantial amount of protein interac-
tions could be found when additional locations were includ-
ed, raising it to 62,352 (78.9%) interactions of 7,494 proteins 
(fig. S13). This further supports the important functional 

role of multilocalizing proteins. With this new location-
pruned interaction dataset we generated a novel map to 
identify the most-connective proteins, also called hub pro-
teins, of each compartment (Fig. 5C). The hub proteins of 
each compartment were mostly different from hubs of the 
original, non-annotated interactome (table S16), hence our 
dataset led to the identification of new driver genes within 
the network. The localization-annotated interactome is 
available in table S17. 
 
Single-cell variations in protein expression 
Protein profiling by IF microscopy allows analysis of expres-
sion patterns on a single-cell level to reveal variations of a 
protein across the analyzed cells. In the Cell Atlas, we la-
beled proteins with an observed single-cell variation (SCV), 
like the nucleolar localization of ZNF554 (Fig. 4, A and C). 
SCV can be observed either in protein expression levels (IF 
signal intensity) or in the spatial distribution pattern. 1,855 
(15%) out of the 12,003 detected proteins showed a SCV (ta-
ble S18). Further studies are needed to reveal whether the 
SCV is due to dynamic protein regulation or stochastic 
events. The majority of these proteins show a variation in 
protein expression levels (1,671), for example CRYAB (Fig. 
6A), whereas 222 proteins showed a variation in spatial dis-
tribution (38 proteins fall into both categories). The orga-
nelles with most SCV proteins are cytosol (394), 
nucleoplasm (381), nucleoli (230), and mitochondria (206) 
(table S8), organelles that also contain most known cell-
cycle dependent proteins. 

In addition to the subcellular structures that only appear 
during cell division (mitotic spindle, cytokinetic bridge, 
midbody and midbody ring), it is plausible to expect a ma-
jority of these SCV to also be related to the cell cycle as the 
cells in the images are growing under asynchronous condi-
tions. To confirm this we used two approaches for a subset 
of the proteins. First, we stained selected proteins with an 
observed SCV in the U-2 OS FUCCI cell line (Fluorescence 
Ubiquitination Cell Cycle Indicator; (46)) that allows moni-
toring of the cell cycle; by this, we could verify a cell cycle-
dependent expression of 64 proteins such as ANLN (Fig. 6, 
B and C; see list of proteins in table S19). The second ap-
proach used a computational model to infer the cell cycle 
position based on features of the microtubule and nucleus 
reference markers. In this manner the cell cycle position of 
the cells in the images could be determined on a continuous 
model and a pseudo-temporal reconstruction allowed the 
pattern of cell cycle dependency to be modeled. Figure 6D 
shows such a plot for ANLN that is expressed in cells in the 
S/G2 phase according to both FUCCI co-localization and the 
pseudo-temporal computational modeling. Like for SCV, cell 
cycle-dependent variation could be observed either in a 
change of the intensity, for example PCNA (Fig. 6E), or in a 
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change of the localization, illustrated by the translocation of 
PSMC6 from nucleoplasm to cytosol (Fig. 6F). 
 
Discussion 
Here we present the most comprehensive map of the subcel-
lular distribution of the human proteome, generated by 
high-resolution IF images on a single-cell level. The results 
are presented in an interactive resource, the Cell Atlas, as 
part of the Human Protein Atlas portal 
(www.proteinatlas.org). This allows exploration of the orga-
nelle proteomes, their substructures, single- and multilocal-
izing proteins, proteins exhibiting single-cell variations in 
expression or those showing a cell-cycle dependent expres-
sion. These defined categories can furthermore be explored 
in terms of gene expression patterns across a multitude of 
cell lines based on transcriptome data. To facilitate integra-
tion with other biological resources, all data are available 
for download from the Human Protein Atlas and through 
collaborations with efforts such as UniProt (19), NextProt 
(29), Gene Ontology (47), and the pan-European ELIXIR 
project (48). 

Spatial partitioning of biological reactions by compart-
mentalization is an important cellular mechanism for allow-
ing multiple cellular reactions to occur in parallel while 
avoiding crosstalk. Intriguingly, we identified more than 
50% of the analyzed proteins localizing to more than one 
compartment at the same time. The fact that proteins are 
localized at multiple sites increases the complexity of the 
cell from a systems perspective. On one level, it can function 
as a spatial confinement in order to control the timing of 
the molecular function in the designated compartment. On 
another level, multilocalizing proteins are more prone to 
have diverse protein-protein interactions due to an in-
creased number of potential interaction partners. This is of 
particular relevance for network analyses and the identifica-
tion of key hub-proteins that play a crucial role linking 
complexes to smaller sub-networks leading to a cellular 
wide network. Moreover, proteins that localize to more than 
one compartment may have context specific functions in-
creasing the functionality of the proteome. The fact that 
proteins ‘moonlight’ in different parts of the cell is now well 
accepted (49, 50). The high percentage of proteins in multi-
ple locations as indicated by the complementary IF and hy-
perLOPIT datasets may be an indicator of the scale on 
which moonlighting occurs. The more complex a system is, 
the greater number of parts must be sustained in their 
proper place and with less tolerance for errors, therefore, a 
high degree of regulation and control is required. To under-
stand cellular function, and in particular in the context of 
health and disease, detailed knowledge about the cellular 
system is needed. We demonstrated that current network 
models benefit from integration of the Cell Atlas localization 

data as spatial boundaries in order to remove false positive 
interactions. 

Taken together, the proteome of a single cell is com-
partmentalized and spatiotemporally regulated to a high 
degree. Protein expression and localization change over 
time and enable the cell to react to intrinsic or extrinsic fac-
tors. Although only presenting a snapshot of the current 
state for a few cells, our single-cell analysis gives insight to 
this dynamic process. The high-resolution map of the sub-
cellular localization of 12,003 human proteins provided by 
the Cell Atlas represents a key resource for a comprehensive 
understanding of the human cell and its complex underly-
ing molecular machinery, as well as a major step toward 
modeling the human cell. 
 
Material and methods 
Tissue culture cell line cultivation 
All cell lines were cultivated at 37°C in a 5% CO2 humidified 
environment in the following growth media: Roswell Park 
Memorial Institute medium (A-431, REH, RH-30, SiHa, SK-
MEL-30; Sigma-Aldrich); Dulbecco’s Modified Eagle Medi-
um (A549, BJ, HaCaT, HeLa, NTERA, SH-S5Y5; Sigma-
Aldrich); Eagle’s Minimal Essential Medium (CACO-2, 
HEK293, HepG2, MCF-7, U-251 MG; Sigma-Aldrich); 
McCoy’s 5A modified (RT-4, U-2 OS; Sigma-Aldrich). Media 
were always supplemented with 10% fetal bovine serum 
(FBS, Sigma-Aldrich); additional cell line-specific supple-
ments were: 1% Non-essential amino acids (CACO-2, HeLa, 
HRK293, HepG2, MCF-7), 1% L-glutamine (CACO-2, HaCaT, 
HepG2, MCF-7, NTERA, RT-4, U-2 OS), 5% horse serum 
(NTERA). No antibiotics were used. 

AF22 cells were kindly provided by Dr. Falck. They were 
cultivated in DMEM/F12 supplemented with N-2 
(Cat#17502048, Thermo Fisher) and Pen/Strep (Sigma-
Aldrich), with freshly added B-27 (1:1000, Cat#12587010, 
Thermo Fisher), EGF (10 ng/ml, AF-100-15, PeproTech) and 
FGF2 (10 ng/ml, 100-18B, PeproTech), flask and plates were 
coated in two steps with poly-N-ornithine (Sigma-Aldrich) 
and laminin (Sigma-Aldrich). 

Telomerase-immortalized cell line HUVEC/TERT2 (Cat# 
MHT-006-2) and ASC/TERT1 (Cat# MHS-001) were a kind 
gift by Evercyte GmbH, Vienna, Austria, and were cultured 
in EndoUp2 and AdipoUp, respectively. 

U2-OS FUCCI cells were developed and kindly provided 
by Dr. Miyawaki (46). The cells were cultivated in McCoy’s 
5A modified medium supplemented with 1% L-glutamine 
and 10% FBS. 

HeLa-Kyoto cell lines stably expressing an EGFP-tagged 
protein encoded on Bacterial Artificial Chromosome (BAC) 
were a kind gift from Prof. A. Hyman, Max Planck Institute 
Dresden, Germany, and were cultivated as described in 
Skogs et al. (37, 45) 
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CRISPR/Cas9 knockout and GFP-expressing cells were a 
kind gift by Horizon Discovery, Cambridge, UK. Their de-
signed HAP1 cell lines were cultivated in IMDM (Iscove's 
Modified Dulbecco's Medium, Sigma-Aldrich) media sup-
plemented with 10% FBS and 1% Pen/Strep. 

All cells were harvested at 60–70% confluency by tryp-
sinization (Trypsin-EDTA solution from Sigma-Aldrich) for 
splitting or preparing in glass bottom plates. 
 
Antibodies 
All antibodies generated and validated within the HPA pro-
ject were rabbit polyclonal antibodies. They were designed 
to bind specifically to as many isoforms of the target protein 
as possible. The antigens consisted of recombinant protein 
epitope signature tags (PrEST) with a typical length be-
tween 50 and 100 amino acids (51). The resulting antibodies 
were affinity purified using the antigen as affinity ligand 
(32). All antibodies used were first approved for sensitivity 
and lack of cross-reactivity to other proteins, on arrays con-
sisting of glass slides with spotted PrEST fragments. Com-
mercial antibodies were provided by the suppliers and used 
according to the supplier’s recommendations. 
 
Sample preparation for indirect immunofluorescence 
A standardized protocol optimized for proteome-wide im-
munofluorescence localization studies was used, which has 
previously been described in detail by Stadler et al. (16). 
Briefly, cells were seeded in 96-well glass bottom plates 
(Whatman, Cat# 7716-2370, GE Healthcare, UK, and Greiner 
Sensoplate Plus, Cat# 655892, Greiner Bio-One, Germany) 
coated with fibronectin (VWR, Sigma-Aldrich) and grown to 
a confluency of 60-70% (log-phase growth). PBS-washed 
cells were fixed in 4% paraformaldehyde (PFA) in growth 
media supplemented with 10% FBS for 15 min, followed by 
permeabilization with 0.1% Triton X-100 in PBS for 3x5 min. 
After a washing step with PBS, cells were incubated with the 
primary antibody overnight at 4°C. Rabbit polyclonal HPA 
antibodies were diluted to 2-4 μg/ml in blocking buffer (PBS 
with 4% FBS) containing 1 μg/ml mouse anti-tubulin 
(Abcam, ab7291, RRID:AB_2241126, Cambridge, UK), and 1 
μg/mL chicken anti-calreticulin (Abcam, ab14234, 
RRID:AB_2228460) or rat anti-KDEL antibody [MAC 256] 
(Abcam, ab50601, RRID:AB_880636), respectively. On the 
next day after 4x10 min washes with PBS, the cells were in-
cubated for 90 min at room temperature with the following 
secondary antibodies (all from ThermoFisher Scientific) di-
luted to 1 μg/ml in blocking buffer: goat anti-rabbit 
AlexaFluor 488 (A11034, RRID:AB_2576217), goat anti-
mouse AlexaFluor 555 (A21424, RRID:AB_2535845), and 
goat anti-chicken AlexaFlour 647 (A-21449, 
RRID:AB_2535866), or goat anti-rat AlexaFluor 647 (A21247, 
RRID:AB_1056356), respectively. Cells were subsequently 

counterstained with DAPI for 10 min. After washing with 
PBS, the wells were completely filled with 78% glycerol in 
PBS and sealed. 
 
Fluorescence image acquisition 
Fluorescent images were acquired with a Leica SP5 confocal 
microscope (DM6000CS) equipped with a 63x HCX PL APO 
1.40 oil CS objective (Leica Microsystems, Mannheim, Ger-
many). The settings for each image were as followed: Pin-
hole 1 Airy unit, 16bit acquisition and a pixel size of 0.08 
μm. The detector gain measuring the signal of each anti-
body was adjusted to a maximum of 800 V to avoid strong 
background noise. The majority of the images were acquired 
manually from at least two representative field-of-views 
(FOVs). For proteins displaying single cell variations in their 
expression pattern, at least six different FOVs were ac-
quired. A small part of the plates were imaged automatically 
using the MatrixScreener M3 in LAS AF software (Leica Mi-
crosystem, Mannheim, Germany). Here, z-stacks at six FOVs 
were acquired and afterward two images were manually 
selected for display in the Cell Atlas. 

All images on the Cell Atlas are unprocessed with a small 
compression due to conversion from tiff- to jpg-file format. 
 
IF image annotation 
The subcellular location of each protein was manually de-
termined based on the signal pattern and relation to the 
markers for nucleus (DAPI), microtubules, and endoplasmic 
reticulum. The annotated locations were as followed: actin 
filaments, aggresome, cell junctions, centrosome, cytokinetic 
bridge, cytoplasmic bodies, cytosol, endoplasmic reticulum, 
focal adhesions, Golgi apparatus, intermediate filaments, 
lipid droplets, microtubule organizing center (MTOC), mi-
crotubules, microtubule ends, midbody, midbody ring, mito-
chondria, mitotic spindle, nuclear bodies, nuclear 
membrane, nuclear speckles, nucleolar fibrillar center, nu-
cleolar rim, nucleoli, nucleoplasm, nucleus, plasma mem-
brane, rods and rings, and vesicles. If more than one 
location was detected, they were defined as main or addi-
tional location depending on the relative signal strength 
between the location and the most common location when 
including all cell lines. Variation between single cells were 
annotated either as a variation in the intensity or spatial 
distribution based on a visual inspection. The staining was 
not annotated if considered negative or unspecific. 
 
Prediction of the human secretome 
For the prediction of the human secretome, the analysis was 
performed as previously described (24). Briefly, a majority 
decision approach was used based on results from three 
methods for the prediction of signal peptides (SP): Sig-
nalP4.0 (52), Phobius (53) and SPOCTOPUS (54). SignalP4.0 
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is solely focused on the prediction of SPs whereas the two 
latter combine the prediction of transmembrane (TM) seg-
ments and SPs. In addition, results from the prediction of 
the human membrane proteome (55) were included to clas-
sify proteins with a predicted SP as well as one or more TM 
regions as membrane-spanning. The resulting list of poten-
tially secreted proteins consists of all proteins with a pre-
dicted signal peptide by two out of three methods and not 
including a predicted TM region. 
 
Classification of location reliability 
Detected locations were classified based on the reliability of 
the antibodies and their respective stainings. A score was 
used for the classification, which incorporated several fac-
tors: Reproducibility of the antibody staining in different 
cell lines (also taken in account when the signal strength 
correlates with RNA expression); reproducibility of the 
staining using antibodies binding to different epitopes on 
the target protein; validation data for the specificity of the 
antibody (knockdown by siRNA or CRISPR/Cas9 knockout 
mutants, matching signal with fluorescent-tagged protein); 
experimental evidence for location described in literature. 
There were also soft factors such as antibody validation by 
non IF-related methods like Western blot or immunohisto-
chemistry. The final score led either to the failing of the an-
tibody (approximately 50% of all tested antibodies failed) or 
to the assignment into one of the following four classes: (i) 
“validated”, if at least one antibody is validated; for exam-
ple, two independent antibodies show the same localization, 
that was also observed in experiments outside the HPA or it 
was supported by e.g., siRNA silencing. (ii) “supported”, if 
there is external experimental data for the location. (iii) 
“approved”, if the localization of the protein has not been 
previously described and was detected by only one antibody 
without additional validation. (iv) “uncertain”, if the anti-
body staining is contradicting to experimental data or no 
expression is detected on the RNA level. 
 
RNA sequencing 
Cell lines were selected for IF imaging based on RNA ex-
pression of genes (56). RNA was extracted from the cells 
using the RNeasy® kit (Qiagen), generating high quality 
total RNA (i.e., RIN>8) that was used as input material for 
library construction with Illumina TruSeq Stranded mRNA 
reagents. Duplicate samples were sequenced on the Illumina 
HiSeq2500 platform. Raw sequences were mapped to the 
Human reference genome GrCh38 and further quantified 
using the Kallisto software (57) to generate normalized 
Transcript Per Million (TPM) values. TPM values for genes 
were generated by summing up TPM values for the corre-
sponding transcripts generated by Kallisto. Genes with a 
TPM value ≥1 were considered expressed. 

Location enrichment of protein sets by hypergeometric 
test 
Enrichment of a group of proteins in subcellular locations 
was examined by hypergeometric tests. In each subcellular 
location enrichment test, only proteins with subcellular lo-
cation annotated were considered. Predicted secreted pro-
teins were collected from the Human Protein Atlas (24), and 
nuclear receptors from nucleaRDB (39), nuclear receptor co-
regulators from nuclear receptor signaling atlas (40), and 
subcellular location-specific protein complexes from 
CORUM (41). In CORUM database, nuclear complex pro-
teins were taken from a term “nucleus” in the database; nu-
cleoli complex proteins from “nucleolus”; cytoskeleton 
complex proteins from “actin cytoskeleton”, “microtubule 
cytoskeleton”, and “centrosome” complexes; mitochondria 
complex proteins from “mitochondrion”; vesicle complex 
proteins from “intracellular transport vesicle”, “peroxisome”, 
and “vacuole or lysosome”; ER complex proteins from “en-
doplasmic reticulum”; plasma membrane complex proteins 
from “plasma membrane/membrane attached” and “cell 
junction”; and cytoplasm complex proteins from “cyto-
plasm”. 
 
HyperLOPIT comparison with Cell Atlas annotations 
To compare the subcellular assignments by both methods it 
was necessary to match the 12 subcellular organelle defini-
tions used by hyperLOPIT to the 30 image categories de-
fined in the Cell Atlas. The comparison was broken down 
into the following subclasses: all Cell Atlas sub-nuclear cat-
egories (“nucleus”, “nucleoplasm”, “nuclear speckles”, “nu-
clear bodies”, “nucleoli”, “nucleoli fibrillar center” and 
“nuclear membrane”) were individually compared to a sin-
gle hyperLOPIT nuclear class encompassing both hyperLO-
PIT terms “nucleus” and “nuclear chromatin”; the Cell Atlas 
term for “vesicles” was compared against the combined hy-
perLOPIT terms for “lysosome” and “peroxisome” (con-
sistent with the Cell Atlas definition for vesicles); and the 
Cell Atlas class “cell junctions” was compared against the 
hyperLOPIT term “plasma membrane”. For the Cell Atlas 
terms called “plasma membrane”, “mitochondria”, “endo-
plasmic reticulum”, “Golgi apparatus” and “cyto-
sol/cytoplasm” the same terms are also available for 
hyperLOPIT and thus a direct comparison was performed. 
Proteins that were assigned by hyperLOPIT to the large pro-
tein complexes such as ribosomal subunits and proteasome 
were excluded from the comparison. 
 
Heat maps for protein-protein interaction 
Protein-protein interaction pairs were obtained from the 
independent Reactome database (Downloaded September 
20, 2016) (44). A binomial test was used to compare the ob-
served frequency of a target protein (Protein B) localizing to 
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a given compartment with the expected frequency based on 
all annotations in the Cell Atlas. Here, the likelihood of lo-
calizations of the first protein in the pair (Protein A) can be 
ignored, as under the null hypothesis it has no impact on 
the localization of Protein B. The test therefore becomes the 
probability that we observe at least as many instances of 
Protein B in a specific compartment given the number of 
“tries” (instances of Protein A) and the background distribu-
tion of proteins over the locations in the Cell Atlas. The 
background distribution of locations was constructed by 
taking the frequency of each annotated location for proteins 
in in the Cell Atlas over the total number of proteins anno-
tated in the Cell Atlas. 

The results of the test were visualized using a heat map 
of p-values (Fig. 5, A and B) where rows represent the loca-
tion of Protein A and columns represent the location of Pro-
tein B. Values are therefore the probability of seeing Protein 
B in the given compartment at least as frequently as it was 
actually observed assuming the background distribution. 
The Bonferroni multiple-hypothesis correction applied per-
row to correct for the number of locations being tested for 
in each pairing. By then considering the correlation of the 
protein-protein interaction pair locations, key insights into 
the nature and quality of the data in the Cell Atlas can be 
gained. 

The Reactome database contains several types of pro-
tein-protein interactions that can be used to assess different 
properties of the Cell Atlas annotations. To assess the quali-
ty of annotation, we first analyzed direct interactions rea-
soning that interacting proteins must occupy the same 
physical space at some point in the cell cycle and therefore 
should be localized either to the same compartment or adja-
cent compartments (Fig. 5A). 

The same analysis was further performed for protein 
pairs listed as belonging to the same reaction pathway as 
defined by the Reactome database to assess what compart-
ments potentially interact through signal cascades (Fig. 5B). 
This analysis was created using MATLAB2016a. 
 
Figure generation 
Plots were generated using R studio (v. 3.3.1) and the addi-
tional ggplot2 package. The cell line hierarchical clustering 
was based on the Spearman correlation of the RNA sequenc-
ing data for each cell line. The average distance was used to 
determine the hierarchical clusters and visualized then by 
the R package ggdendro. The circular plots showing distri-
bution of multilocalizing proteins were created using the 
Circos software (v. 0.69) (58). The image montages were 
created using FIJI ImageJ (v 2.0.0-rc-49/1.51f). 
 
Gene Ontology terms and functional enrichment 
To check the overlap with Gene Ontology annotations for 

proteins in the Cell Atlas, the web based tool QuickGO (59) 
was used to acquire GO-annotations for all genes using fil-
ters for Cellular Component and information source (down-
loaded February 15th, 2017). The GO annotations based on 
data from the Cell Atlas were removed, and the Ensembl IDs 
for all Cell Atlas genes were then used for checking the over-
lap of genes with experimental evidence for any GO annota-
tion. The functional annotation clustering for the genes not 
expressed in the Cell Atlas cell line panel was performed 
using the web based tool DAVID (Database for Annotation, 
Visualization, and Integrated Discovery v. 6.8) (60). All hu-
man genes were used as a background and the GO domain 
Biological Process terms with Bonferroni value of less than 
0.01 were regarded as significantly enriched. 
 
Location-pruned protein-protein interactions 
Proteins interactions were obtained from published protein 
interactome data (45); among those protein interactions, 
only interactions with “signaling”, “kinase”, “complex”, “lit-
erature”, and “binary” types were taken; this indicates direct 
protein interactions. Those protein interactions were 
pruned to proteins localized in the same subcellular loca-
tions; in either cytoplasm or plasma membrane; or in either 
cytoplasm or cytoskeleton. Location-pruned protein interac-
tions were visualized (Fig. 5C) through the edge-weighted 
spring embedded layout of Cytoscape (61) and their nodes 
were colored by the least frequent one of subcellular loca-
tions they have. In each subcellular location, hub proteins 
from protein interactions of given subcellular locations were 
examined based on their degree connectivity. 
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Fig. 1. Subcellular locations in the 
Cell Atlas. (A) Schematic overview of 
the cell. 13 subcellular proteomes as 
well as a proteome of secreted 
proteins were defined in the Cell Atlas 
by determining the protein localization 
to 30 subcellular structures. (B) 
Subcellular structures annotated in 
the Cell Atlas by immunofluorescence 
microscopy. Examples of proteins (in 
green) localizing to all annotated 
structures in a representative set of 
human cell lines used in the Cell Atlas. 
Microtubules are marked with an anti-
tubulin antibody (red); the nucleus is 
counterstained with DAPI (blue). The 
side of an image represents 64 μm. 
For information about cell lines, 
antibodies and proteins see table S6. 
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Fig. 2. Transcriptomics and proteomics. (A) mRNA deep sequencing was performed for 56 cell lines. 
The cell lines were clustered based on the gene expression patterns. The color of the cell line name 
represents its origin: red – myeloid, yellow – lymphoid, brown – lung, dark blue – brain, turquoise - renal, 
urinary and male reproductive system, green – breast and female reproductive system, pink – sarcoma, 
purple – fibroblast, dark blue – abdominal, black - miscellaneous. Cells immortalized by the introduction 
of telomerase are indicated by an asterisk (*). Cell lines in bold are included in the Cell Atlas cell line panel. 
(B) Number of proteins per subcellular location. 12,003 proteins were localized to one or more subcellular 
compartments in this study. Locations are sorted and color-coded according to the number and the meta-
compartments “cytoplasm” (cytosol and embedded organelles), “nucleus” (nuclear and nucleolar 
structures), and “secretory pathway” (ER, Golgi apparatus, vesicles, and plasma membrane). Note that 
some locations are merged: aggresomes and R&R to cytosol, microtubule ends and mitotic spindle to 
microtubules, midbody ring to midbody. (C) RNA classification categories per major organelle (nucleus 
and nuclear membrane are merged) compared to the background of genes in the Cell Atlas. Genes with a 
TPM value of ≥1 were considered as expressed and classified either as “expressed in all cell lines”, 
“enriched“ (expression in one cell line at least five-fold higher than in all other cell lines), “enhanced” (five-
fold higher average TPM level in one or more cell lines compared to the mean TPM of all cell lines) or 
“mixed” (expressed but not one of the other categories). (D) C4orf19 (detected by HPA043458 in RT4 
cells) localized to cell junctions, a subdomain of the plasma membrane (E to G) Protein localizing at the 
final stage of the cytokinesis: CCSAP to the cytokinetic bridge (detected by HPA028402 in U-2 OS cells 
(E)), CHMP1B to the midbody (detected by HPA061997 in SiHa cells (F)), and APC2 to the midbody ring 
(detected by HPA078002 in U-2 OS cells (G)). (H) MKI67 (detected by CAB000058 in U-251 MG cells) 
localized to the rim of nucleoli. (I) Novel protein C21orf59 (detected by CAB034170 in U-2 OS cells) 
localized to R&R, whose formation was induced by ribavirin. (J and K) Conventional IF images in the Cell 
Atlas (J) and super-resolution images acquired with STED (K) of a PML-body (a class of nuclear bodies) 
show the surface of the body marked by PML (red) and the shell protein SP100 (HPA016707, green) or 
the core protein ZBTB8A (HPA031768, green); scale represents 10 μm in (D) to (J) and 0.05 μm in (K). 
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Fig. 3. Validation by proteome-wide databases and hyperLOPIT. 
(A) Location enrichment analyses of different protein sets. 
Hypergeometric tests were performed to evaluate subcellular 
locations (P-value < 0.05). Nuclear receptors were enriched in the 
nuclear meta-compartment. Predicted secreted proteins were 
enriched in organelles of the secretory pathway, ER, Golgi apparatus 
and vesicles. Members of known complexes according to the CORUM 
database were enriched in the respective organelle, for instance 
mitochondria and ER. (B) A principal components analysis (PCA) 
representation of the human U-2 OS cell hyperLOPIT data (5,020 
proteins common across two hyperLOPIT replicates). One point 
represents one protein and proteins cluster according to their density 
gradient distribution. Colored circles form subcellular compartments 
that have been classified by a SVM. For the statistical comparison to 
the Cell Atlas, hyperLOPIT subcellular annotations were matched with 
their equivalent Cell Atlas definition. (C to E) PCA plots of the U-2 OS 
human dataset for (C) vesicles (D) nucleoli, and (E) the ER. Proteins 
common in both the Cell Atlas and hyperLOPIT datasets are visualized 
(3,626 proteins). Black stars represent partial matches and red 
triangles represent unique matches between organelles in the HPA 
and hyperLOPIT datasets. 
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Fig. 4. Multilocalizing proteins in the human proteome. (A to D) ZNF554 is an example of a cell line-
dependent subcellular localization. Two antibodies, HPA060247 (left, A and B) and HPA063358 (right, C and 
D), binding different epitopes detected ZNF554 in both the nucleoplasm and nucleoli in U-2 OS cells, whereas 
only in the nucleoplasm in RT4 and SH-SY5Y (not shown). The nucleolar expression was only detected in a 
fraction of the U-2 OS cells and thus showed additionally a single-cell variation. Scale bar represents 10 μm. 
(E to G) Circular plots with the identified proteins per compartment presented and sorted by meta-
compartments. Multilocalizing proteins appearing more than once in the plots are connected by an edge. (E) 
Circular plot with all meta-compartments and proteins combined. (F) Circular plot visualizing connections 
only within a meta-compartment (G) Circular plot visualizing connections only across meta-compartments 
(H to K) Examples for dual localizations: (H) UBE2L3 in nucleus and cytosol (detected by HPA062415 in A-
431 cells), (I) 60S ribosomal protein L19 in nucleoli and cytosol (detected by HPA043014 in U-2 OS cells), (J) 
MTIF in nucleus and mitochondria (detected by HPA039791 in U-2 OS cells), (K) CCAR1 in Golgi apparatus 
and nucleoplasm (detected by HPA007856 in U-251 MG cells). Scale bar represents 10 μm. 
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Fig. 5. Protein-protein interactions. (A and B) Information of protein-protein interaction pairs from the 
independent Reactome database were used to assess the quality of annotations in the Cell Atlas and identify 
potential interacting compartments. The Bonferroni-corrected binomial test (p-value) heatmaps describe 
significant overrepresentation of observing proteins in each organelle (y-axis) given the location of its 
interaction partner (x-axis) and the probability of randomly choosing a protein from each organelle in the Cell 
Atlas. (A) Analysis of direct protein-protein interactions defined by Reactome (B) Protein-protein interaction 
within the same reaction defined by the Reactome. (C) Human interactome pruned by the protein subcellular 
localization reveals hub proteins for each compartment (i.e., top-10 hub proteins, based on their degree 
connectivity). The full scale of the pruned interactome with nodes colored by one of their subcellular 
localizations is shown. Edges between same-colored nodes, i.e., same compartment, indicate protein 
interactions of a compartment of given color; and edges across differently colored nodes, i.e., different 
compartments, indicate possible linkages across all compartments because of multilocalized proteins. 
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Fig. 6. Single-cell variation of 
protein expression. (A) CRYAB 
(detected by CAB002053 in U-2 
OS cells) showed a single-cell 
variation in the cytosolic signal 
strength (B and C) U-2 OS FUCCI 
cells expressed the cell cycle 
regulators Cdt1 (red) during G1 
phase and geminin (green) during 
S/G2 phase. Antibody targeting 
ANLN (yellow) stained only cells in 
S/G2 phase marked by the green 
fluorescence. (D) Pattern of 
expression of ANLN across the cell 
cycle in U-2 OS cells by pseudo-
temporal analysis using a time 
regressive computational model. 
(E) The protein abundance of 
PCNA (detected by HPA030522 in 
U-2 OS cells) at nuclear bodies 
varied during the cell cycle. (F) 
PSMC6 (detected by HPA042823 
in U-2 OS cells) changed its spatial 
distribution from nucleoplasm to 
cytosol during the cell cycle based 
on U-2 OS FUCCI cells. Scale bar 
represents 10 μm in (A) and (F), 
and 50 μm in (C). 
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